skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aslam, Laeeq"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study proposes an intelligent techno-economic assessment framework for wind energy end users, using a novel dual-input convolutional bidirectional long short-term memory (Dual-ConvBiLSTM) architecture to predict dynamic levelized cost of energy (LCOE). The proposed architecture separates weight matrices for wind supervisory control and data acquisition (SCADA) data and financial data. This allows the model to integrate both data streams at every time step through a custom dual-input cell. This approach is compared with five baseline architectures: Recurrent Neural Network (RNN), LSTM, BiLSTM, ConvLSTM, and ConvBiLSTM, which process data through separate parallel branches and concatenate outputs before final prediction. The Dual-ConvBiLSTM achieves an LCOE estimate of $4.0391 cents/kWh, closest to the actual value of $4.0450 cents/kWh, with a root mean squared error reduction of 51.8% compared to RNN, 47.0% to LSTM, 40.0% to BiLSTM, 36.7% to ConvLSTM, and 34.4% to ConvBiLSTM, demonstrating superior capability in capturing complex interactions between SCADA data and financial parameters. This intelligent framework potentially enhances economic assessment and enables end users to accelerate renewable energy deployment through more reliable financial prediction. 
    more » « less
    Free, publicly-accessible full text available November 11, 2026